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Fig. 1: ROBOVERSE comprises a scalable simulation platform, a large-scale synthetic dataset, and unified benchmarks. The
simulation platform supports seamless integration of new tasks and demonstrations through unified protocols, ensuring flexibility
and extensibility. The dataset includes over 1,000 diverse tasks and more than 10 million transitions, constructed through
large-scale data migration, cross-embodiment transfer, and robust augmentation and randomization.

Abstract—Data scaling and standardized evaluation bench-
marks have driven significant advances in natural language
processing and computer vision. However, robotics faces unique
challenges in scaling data and establishing reliable evaluation
protocols. Collecting real-world robotic data is resource-intensive
and inefficient, while benchmarking in real-world scenarios
remains highly complex. Synthetic data and simulation offer
promising alternatives, yet existing efforts often fall short in data
quality, diversity, and benchmark standardization. To address
these challenges, we introduce ROBOVERSE, a comprehensive
framework comprising a simulation platform, a synthetic dataset,
and unified benchmarks. Our simulation platform supports
multiple simulators and robotic embodiments, enabling seamless
transitions between different environments. The synthetic dataset,
featuring high-fidelity physics and photorealistic rendering, is

constructed through multiple approaches including migration
from public datasets, policy rollout, and motion planning,
etc. enhanced by data augmentation. Additionally, we propose
unified benchmarks for imitation learning and reinforcement
learning, enabling consistent evaluation across different levels of
generalization. At the core of the simulation platform is METASIM,
an infrastructure that abstracts diverse simulation environments
into a universal interface. It restructures existing simulation
environments into a simulator-agnostic configuration system, as
well as an API aligning different simulator functionalities, such
as launching simulation environments, loading assets with initial
states, stepping the physics engine, etc. This abstraction ensures
interoperability and extensibility. Comprehensive experiments
demonstrate that ROBOVERSE enhances the performance of
imitation learning, reinforcement learning, and world model



learning, improving sim-to-real transfer. These results validate the
reliability of our dataset and benchmarks, establishing RoboVerse
as a robust solution for advancing simulation-assisted robot
learning.

I. INTRODUCTION

Large-scale datasets, combined with well-established bench-
marks, have fueled rapid advancements in natural language
processing (NLP) [93, 5] and computer vision (CV) [23,
59, 57, 95, 67, 43] . Specifically, large-scale data provides
ample training examples that bolster learning, while uniform
benchmarks enable standardized evaluation and fair comparison
across different methods. However, replicating these successes
in robotics remains challenging due to the difficulty of
collecting high-quality, diverse data and the lack of widely
recognized evaluation protocols.

Real-world approaches [15, 54] to constructing datasets and
benchmarks, though authentically reflecting the complexities of
operational environments, face significant practical constraints.
First, collecting demonstrations is time-consuming and resource-
intensive, and the resulting data is often hardware-dependent
or modality-specific, limiting its adaptability to new scenarios.
Additionally, establishing standardized and widely applicable
benchmarks is inherently challenging since reproducing identi-
cal conditions for fair comparisons is nearly impossible. For
instance, object placements can vary across rollouts, ambient
lighting fluctuates under natural sunlight, and background
environments may change. Consequently, scaling real-world
datasets, evaluating policies, and iterating development in
real-world scenarios remain cost-prohibitive and difficult to
standardize.

Simulators, on the other hand, present a promising alternative
for large-scale dataset and benchmark construction. By pro-
viding efficient computation, synthetic assets, and omniscient
information in reproducible settings, they enable cost-effective
dataset construction and consistent performance evaluation.
Recent works, exemplified by [135, 50, 10, 33, 98, 124, 70],
have demonstrated the potential of simulation-based methods
in various robotic tasks. Despite these advantages, several
challenges impede the broader adoption of synthetic datasets
and benchmarks. First, utilizing simulators often demands
considerable expertise due to both the complexity of simulator
design and the relative immaturity of many platforms, which
complicates the data construction process. Second, simula-
tors vary widely in their internal architectures and external
interfaces, making it laborious to transfer data and models or
adapt workflows from one to another. Consequently, reusing
existing synthetic datasets and benchmarks is difficult, resulting
in a fragmented ecosystem that further hinders convenient
construction and effective use of large-scale data in simulation
environments.

To fully harness the potential of simulation in robotics, we
introduce ROBOVERSE, a scalable simulation platform that
unifies existing simulators under a standardized format and a
single infrastructure, a large-scale synthetic dataset, and unified
benchmarks. To achieve this, we first propose METASIM, the

core infrastructure of the ROBOVERSE. Through careful design,
METASIM establishes a universal configuration system for
agents, objects, sensors, tasks, and physics parameters while
exposing a simulator-agnostic interface for simulation setup
and control. This architecture enables seamless integration of
tasks, assets and robot trajectories from diverse simulation en-
vironments with minimal adaptation effort. METASIM provides
three key capabilities: (1) Cross-Simulator Integration: Enables
seamless switching between different simulators, fostering uni-
fied benchmarking and facilitating the transfer of environments
and demonstrations across platforms. (2) Hybrid Simulation:
Combines the strengths of multiple simulators—such as pairing
advanced physics engines with superior renderers—to generate
scalable and high-quality synthetic data. (3) Cross-Embodiment
Transfer: Allows the retargeting of trajectories across various
robot arms with parallel grippers, maximizing dataset reuse
from heterogeneous sources.

METASIM enables ROBOVERSE to systematically enhance
the workflow for building and scaling simulation environments
and datasets. Our method features:

• Scalable and Diverse Data Generation: By aligning
multiple benchmarks and task trajectories and leveraging a
robust multi-source integration and data filtering pipeline,
we generate large-scale, high-quality datasets. Addition-
ally, our data randomization and augmentation pipeline
enhances data diversity and volume, further enriching the
dataset for comprehensive model training;

• Realistic Simulation and Rendering: With METASIM’s
hybrid simulation capability, we enable the fusion of ad-
vanced physics engines and rendering systems across mul-
tiple simulators and renderers. Combined with carefully
curated scenes, materials, and lighting assets, ROBOVERSE
enhances realism in physical interactions and sensory
observations;

• Unified Benchmarking and Evaluation: We unify widely
used benchmarks into a cohesive system, streamlining
algorithm development and performance comparison
within a structured evaluation framework. Additionally,
we introduce a standardized benchmarking protocol to
assess varying levels of generalization and sim-to-real
transferability.

• Highly Extensibility and Scalability: The aligned APIs
and infrastructure streamline development and enable
efficient algorithm integration, testing, and deployment
across diverse simulation environments. Additionally, we
develop real-to-sim frameworks, multiple teleoperation
methods, and AI-generative systems for scalable task and
data creation.

Leveraging these workflows in ROBOVERSE, we construct
the largest and most diverse high-quality synthetic dataset
and benchmark to date, all in a unified format. This dataset
includes ∼500k unique, high-fidelity trajectories covering 276
task categories and ∼5.5k assets. Additionally, we generate
over 50 million high-quality state transitions to support policy
learning.



Beyond dataset and benchmark construction, we explore
the potential of ROBOVERSE through extensive experiments
on imitation learning (Sec. VI-B), reinforcement learning
(Sec. VI-C), and world model learning (Sec. VI-E). Our results
demonstrate that ROBOVERSE enables reliable policy learning
and evaluation, supports strong sim-to-sim and (Sec. VI-G)
sim-to-real transfer (Sec. VI-F) via high-fidelity physics and
rendering, and facilitates efficient data expansion through
teleoperation (Sec. ??), trajectory augmentation (Sec. IV-D1),
domain randomization (Sec. IV-D2) and generative models
(Sec. IV-C). These findings highlight the framework’s robust-
ness, scalability, and real-world applicability.

II. RELATED WORK

A. Robotics Simulators

Advancements in computer graphics have contributed to
the development of high-fidelity simulators, which are widely
used in robotics research and development. CoppeliaSim [97],
Bullet [16], and MuJoCo [111] provide accurate physics
simulations and are extensively utilized in applications such
as reinforcement learning and robotic benchmarking [3, 126,
87, 14]. More simulators have been developed to fully exploit
parallelism for better efficiency. IsaacGym [72], IsaacSim [85],
SAPIEN [37, 109], MuJoCo MJX [111, 132], and Genesis [2]
utilize GPU power for enhanced performance, enabling large-
scale reinforcement learning and efficient data collection,
significantly improving training speed and scalability. Some
simulators focus on bridging the simulation-reality gap (Sim-to-
Real Gap), incorporating technologies including ray-tracing and
customized renderers for photo-realistic rendering [85, 109].
Furthermore, IsaacSim [85] and Genesis [2] offer high-fidelity
soft-body and liquid simulation, expanding the scope of
realistic robotic interactions. ROBOVERSE proposes a unified
platform that supports multiple simulators, facilitating seamless
transitions between them and enabling hybrid integration to
utilize the strengths of each simulator.

B. Large-Scale Robotics Dataset

The scarcity of large-scale, high-quality, and diverse datasets
in the robotics community has long been recognized. Several
works have shown the possibility of collecting demonstration
data directly on real robots. RoboNet [20] is a large-scale
manipulation dataset containing roughly 162k trajectories from
multiple robot platforms. DROID [54] has collected over
76k contact-rich robotic manipulation demonstrations across
86 tasks. RH20T [28] proposed a dataset with over 100k
demonstrations and 147 tasks. At the same time, RT-1 [4]
set the record further to 130k demonstrations on over 700
tasks. Recently, Open X-embodiment [15] has demonstrated a
promising approach to unite the community’s efforts, collecting
over 1M trajectories on 160,266 tasks with 22 different
embodiments. At this stage, real-world datasets became difficult
to scale up due to the proportional effort and cost required to
collect more demonstrative trajectories.

Simulation-based data collection provides a promising solu-
tion to the high cost and inefficiencies of real-world datasets.
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Fig. 2: ROBOVERSE consists of a simulation platform, a large-
scale, high-quality dataset, and unified benchmarks. At the core
of the simulation platform is METASIM, the infrastructure of
ROBOVERSE. Powered by METASIM, the simulation platform
facilitates dataset creation and benchmark construction.

Hussing et al. [46] proposed a dataset containing 256M
transitions on 256 tasks for offline compositional reinforcement
learning. RoboCasa [82] introduced a dataset of 100 tasks
and over 100k trajectories for generalist robots. DexGraspNet-
2.0 [134] has collected over 400M demonstrations for dexterous
grasping. Despite these efforts, synthetic datasets often exist
in disparate simulators, leading to a fragmented ecosystem
with limited diversity and quality. Moreover, simulation-based
data often fails to capture complex physics and diverse task
variations found in the real world [63, 26], potentially causing
overfitting to specific simulators and hampering generalization
to real-world scenarios.

ROBOVERSE provides a unified solution for large-scale, high-
quality, and diverse synthetic data. It enables agents to train on
a large set of environments and simulators to reduce overfitting,
thereby improving the robustness of the learned policies.

C. Benchmarking in Robotics

Benchmarking remains a critical yet highly challenging
problem in the robotics community. Compared to supervised
learning tasks, it is relatively difficult to evaluate the per-
formance of a robotics model. MetaWorld [131] is an early
attempt in multi-task benchmarking. This is followed by
RLBench [48], Behavior-1k [62], Habitat [108], and Man-
iSkill [81, 37, 109, 103], covering a large variety of robotic
tasks. Grutopia [116] and InfiniteWorld [96] make a leap toward
general-purpose robot benchmarking.

Despite significant efforts dedicated to these benchmarks,
it is not guaranteed that the results are reproducible across
different benchmarks. The uncertainty comes from multiple
aspects including simulation accuracy, rendering style and asset
properties [63, 26]. To address these challenges, ROBOVERSE
enables researchers to evaluate their policies across multiple
benchmarks and simulators seamlessly, without familiarizing
themselves with each one individually.
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Fig. 3: METASIM provides a universal configuration system, aligned simulator backends, and a Gym [112] environment wrapper.
This three-layer architecture abstracts simulation environments into simulator-agnostic specifications and aligns simulator
backends, enabling three key capabilities: cross-simulator integration, hybrid simulation and cross-embodiment transfer. Based
on METASIM, we build a pipeline to collect tasks, assets and trajectories from diverse public sources in a unified format,
employ data augmentation methods, and ultimately generate a large-scale high-quality dataset along with unified benchmarks.
This data pipeline forms the foundation of ROBOVERSE, facilitating the generation of large-scale datasets and construction of
unified benchmarks.

III. INFRASTRUCTURE: METASIM

A. METASIM Overview

We present METASIM, a high-level interface above specific
simulation environment implementations. It is also the core in-
frastructure of ROBOVERSE. As illustrated in Fig. 2, METASIM
empowers the ROBOVERSE simulation platform, allowing for
the generation of a large-scale high-quality dataset, as well as
the construction of a unified benchmark.

B. METASIM Implementation

As illustrated in Fig. 3, METASIM employs a three-layer
architecture including a universal configuration system, a
simulator-agnostic interface, and a user-friendly environment
wrapper. The universal configuration system unifies specifica-
tions for a simulation scenario and ensures consistent format
across simulators. The simulator-agnostic interface interprets
these specifications, translates them into simulator-specific
commands, and therefore aligns different simulator backends. In
addition, the environment wrappers encapsulate the simulator-
agnostic interface into a standarized learning environment, such
as a Gym [112] environment. We describe each layer with more
details in the following sections.

1) Universal Configuration System: A typical simulation
environment comprises agents, objects, tasks, sensors, and
physics parameters. They collectively define who performs
the actions (agents), what the environment looks like (objects),
what the agents should do (tasks, including instructions, success
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Fig. 4: The MetaConfig is a nested dataclass that abstracts
the core components in any simulation environment in a
simulator-agnostic way.

metrics, and rewards), how the environment is perceived and
measured (sensors), and the governing physical laws (physics
parameters). Ideally, these components should be simulator-
agnostic, requiring a unified standard of simulation scenarios.
Such a standard would enable researchers to work across
different simulators seamlessly and integrate existing efforts
from the community through cross-simulation.

Based on such a principle, we design a configuration system,
MetaConfig, to abstract simulation scenarios in a simulator-
agnostic way. As illustrated in Fig. 4, MetaConfig is a nested
class that contains the above-mentioned core components. It
can be interpreted by different simulator backends to build
the corresponding simulation. Additionally, MetaConfig
supports optional simulator-specific hyperparameters (e.g.,
solver type), allowing fully leveraging the unique features
of different simulators through customization.



class Env:
def __init__(self, handler):

self.handler = handler
handler.launch()

def reset(self):
handler.set_states()
states = handler.get_states()
return get_observation(states), \

handler.get_extra()

def step(self, action):
handler.set_states(action=action)
handler.step()
states = handler.get_states()
return get_observation(states), \

get_reward(states), \
get_success(states) \
get_termination(states), \
get_time_out(states), \
handler.get_extra()

def render(self):
return handler.render()

def close(self):
handler.close()

Code 1: Pseudocode for gym.Env implementation. Each
method of gym.Env is implemented by calling the corre-
sponding methods of the Handler class.

2) Aligned Simulator Backends: Different simulators have
their own implementations and specializations. However, rou-
tine operations – such as initializing a scene, loading objects,
stepping the physics engine, retrieving observations, time man-
agement, and determining success states – tend to follow similar
patterns. To standardize these shared operations, we create a
unified interface through a Handler class. Each simulator
has its own handler instance implementing this interface. The
handler class implements the common methods including
launch(), get_states(), and set_states(), etc.,
spanning the whole lifecycle of simulating a task. The usage of
the APIs is illustrated in Code 1. More information is provided
in the supplementary materials.

3) User-Friendly Environment Wrapper: The Gym
API [112] is a widely adopted paradigm in reinforcement
learning and robotics, in which the gym.Env class is
fundamental to building learning environments. We define a
wrapper to easily transform a Handler into an environment
equipped with Gym APIs (step(), reset(), render(),
and close()). As shown in Code 1, these methods are
implemented by leveraging the underlying Handler methods.

C. METASIM Capabilities

METASIM offers the following three key capabilities.
1) Cross-Simulator Integration: Seamlessly switching be-

tween different simulators, allowing tasks and trajectories
from one simulator to be utilized in other simulators. This
capability enables efficient task and trajectory integration,

unified benchmark construction, and sim-to-sim transfer for
reinforcement learning training. For example, tasks from
MetaWorld [131] can be used by Isaacgym [72] for fast parallel
training, after which the generated trajectories can be deployed
in IsaacSim [85] for rendering.

2) Hybrid Simulation: METASIM supports combining the
physics engine of one simulator and the renderer of another
simulator at the same time, allowing users to benefit from
advantages owned by different simulators. Specifically, using a
single command, one could launch a simulator with a powerful
renderer (e.g., IsaacSim [85]) with a simulator that has an
accurate physics engine (e.g., MuJoCo [111]) to form an
even more powerful simulation, enabling high-quality data
generation.

3) Cross-Embodiment Transfer: Reusing the trajectories
across different gripper-based robot morphologies by retarget-
ing the end-effector pose, which allows the integration of data
collected from diverse robots into a unified format.

IV. ROBOVERSE DATASET

A. Dataset Overview

On top of METASIM, we generate large-scale high quality
dataset by incorporating multiple data collection methods.
Overall, there are three key data types to collect: tasks,
assets, and robot trajectories. The main source of these data
is migration from existing simulation environments. Beyond
migration, we explore various methods to collect these data,
such as using large language models to generate new tasks,
leveraging the RealSsim toolset [68] to reconstruct assets from
the real world, using teleoperation to collect new trajectories,
etc. Additionally, we leverage data augmentation methods for
both trajectories and visual observations. Finally, we report the
statistics for current progress of data migration in ROBOVERSE.

B. Tasks, Assets and Trajectories Collection: Migration

Leveraging the RoboVerse format and infrastructure, we
seamlessly integrate a wide range of benchmarks and datasets
into our system with a unified format and clean codebase.
We apply the following approaches to collect tasks and
demonstrations.

• Direct Migration from Other Simulation Environments
Some benchmarks provide essential components integra-
tion into ROBOVERSE. We define environment configura-
tions for task initialization and evaluation, then convert
trajectory data and asset formats for seamless compatibility.
Notably, ROBOVERSE streamlines this migration process
by first aligning formats in the original simulator and
automatically ensuring compatibility across all simulators.

• Motion Planning and RL Rollout When benchmarks
provide only partial manipulation data, such as keypoint
trajectories or grasping poses, we use motion planning to
generate complete trajectories. If no explicit manipulation
data is available but pre-existing policies or reinforcement
learning frameworks exist, we either utilize these policies
or train new ones to collect demonstration data through
rollouts. To ensure high data quality and consistency with



our system standards, we carefully adapt the success
checker and rigorously filter both planned and collected
trajectories.

With the techniques mentioned above, we migrated multiple
existing manipulation datasets into ROBOVERSE. Currently, we
support ManiSkill [81, 37, 109], RLBench [48], CALVIN [79],
MetaWorld [131], RoboSuite [142], MimicGen [76], GAPart-
Net [34], Open6DOR [24], ARNOLD [36], LIBERO [65],
Simpler [63], GraspNet [27], GarmentLab [69], and UniDoor-
Manip [64].

We also integrated datasets from a wider range of embodi-
ments, including dexterous hands, quadrupeds, and humanoids,
covering tasks such as dexterous manipulation, locomotion, nav-
igation, and whole-body control. Currently, we have migrated
VLN-CE R2R [58] and RxR [60] for navigation, as well as
HumanoidBench [102] and Humanoid-X [77] for locomotion
and whole-body control.

RoboVerse simplifies and standardizes the migration process,
and we will continue to maintain and expand it.

C. Tasks, Assets and Trajectories Collection: Teleoperation
and Generation

• Teleoperation System for Trajectory Collection . As shown
in Fig. 5, ROBOVERSE integrates teleoperation systems
within the METASIM infrastructure, offering a flexible and
efficient solution for high-quality data collection. It supports
various robotic systems, including arms, dexterous hands [88],
and bimanual setups, enabling seamless teleoperation across
different simulators. To mitigate the high cost and complexity
of professional equipment, we introduce an interactive motion
control system utilizing accessible devices such as keyboards,
joysticks, mobile apps (we developed a new app for Android
and iOS to control robotic arms; see supplementary materials
for more details.), motion capture (Mocap) [114], and VR
systems [12, 92]. These devices’ integrated sensors capture
motion data, allowing natural, gesture-based control along
with real-time, high-frequency communication for precise,
low-cost remote operation. Further details are provided in
the supplementary materials.

• AI-Assisted Task Generation. Leveraging the generalization
capability of large generative models, AI-assisted task gen-
eration provides a mechanism to diversify task varieties and
scenario distribution. By learning from example placements,
it acquires a sense of spatial and semantic constraints [1]
(e.g. by demonstrating specific constraints, it can learn
to spread out objects to avoid potential overlap etc.). It
can arrange objects originally from different benchmarks
into a physically plausible scenes based on METASIM, as
shown in Fig. 6. Incorporating randomization in robot
and object selection [52] with their initial poses, large
generative models can generate various initial states. The
system can automatically output all the required configuration
files in unified format for instant visualization and user-
friendly editing. After task generation, we will process a
two-step filtering to avoid errors and hallucinations: (1)
Format Validation: Tasks that fail to meet ROBOVERSE

Keyboard Android VRiPhone MocapJoystick

Fig. 5: Teleoperation System. ROBOVERSE supports various
user-friendly teleoperation approaches. Currently, it enables
teleoperation via a phone app (second row), motion capture
(middle), VR devices (bottom left), as well as keyboard and
joystick (bottom right). These methods allow control of robotic
arms, dexterous hands, and bimanual systems across different
simulators.

format standards are discarded. (2) Feasibility Check: Since
trajectory data is collected via human teleoperation, tasks
deemed unreasonable by the teleoperator are removed. By
unleashing the extrapolative and few-shot learning abilities of
large generative models, we integrate assets under a uniform
schema automatically, driving task generation that spans
multiple simulators and benchmarks.

• Real-to-Sim for Asset Construction. Video-based recon-
struction proves to be a valuable source for data and asset
creation by leveraging Real-to-Sim techniques. Our approach
integrates multiple reconstruction pipelines to extract high-
fidelity assets from video data. First, we initialize the
structure using Colmap [99, 100] and employ Gaussian
Splatting [53] for high-quality rendering. Next, we infer
physical properties by feeding both semantic and original
images into a Vision-Language Model (VLM) [140]. For
geometry reconstruction, we estimate surface normals from
video [129], apply surfel splatting [45], and utilize TSDF-
based methods with dynamic filtering to reconstruct detailed
meshes [128]. By leveraging semantic masks [95], we
selectively extract components from both Gaussian and mesh
representations. To further enhance realism, we infer and
learn object kinematics directly from video [66], ensuring
accurate motion representations. Finally, we formulate URDF
models by refining key attributes such as coordinate frames,
orientation, axis alignment, scale, relative 6-DoF poses,
and PD control parameters [68]. This pipeline effectively
bridges the gap between real-world video data and simulation-
ready assets, enhancing robotic learning and simulation
fidelity. We also present comparative experiments in the
supplementary materials, demonstrating that our methods
significantly enhance real-world policy performance.



Place butter in the drawer, then close the drawer

Put basket into the box, then put milk into the basket

Stack tomato sauce on top of cup, then stack chocolate pudding on top of the sauce 

Place butter, cream cheese, and chocolate pudding in a line, then knock them over like dominoes

Fig. 6: AI-Assisted Task Generation. RoboVerse supports an
AI-assisted task generation framework that leverages large gen-
erative models’ extrapolation capabilities to generate non-trivial
and semantically rich tasks. Combined with our teleoperation
system, it enables the generation of diverse and high-quality
data.

Multi-View Image

Control in MetaSim (Genesis)

Fully Reconstructed Mesh and URDF

3D GS
TSDF

Execution in the real world

Real Sim

Fig. 7: Real-to-Sim Tools. We use a mobile device to capture
multi-view images, reconstruct a high-quality mesh, build a
URDF using VLM, and then perform actions in both RoboVerse
and the real world.

D. Data Augmentation

1) Trajectory Augmentation: With the unified simulation
interface and data format, ROBOVERSE enables significantly
more efficient data augmentation and supports advanced aug-
mentation techniques. Beyond the visual randomization detailed
in Benchmark Protocol [8], we also provide robust trajectory
space augmentation. We offer an API to generate large-scale
robot trajectory datasets from a limited number of source
demonstrations. Following the MimicGen [76] framework, for
most tasks, we can decompose them into a sequence of object-
centric subtasks (S1(oS1

), S2(oS2
), . . . , SM (oSM

)), where the
robot’s trajectory within each subtask Si(oSi) is relative to

a single object’s coordinate frame (oSi
∈ O, O is the set

of objects in the task M). Additionally, we assume that the
sequence of subtasks in each task is predefined. By leveraging
this minimal human annotation regarding the order of subtasks,
we can efficiently divide each source demo into contiguous
object-centric manipulation segments {τi}Mi=1 (each of which
corresponds to a subtask Si(oi)) using a simulator, and then
generate extensive trajectory datasets for various task variants
(in our case: variations in the initial and goal state distributions
of objects (D) and robots (R)) using MimicGen [76]. This
approach has been shown to significantly benefit generalization
in imitation learning [76, 50, 117, 31, 82], particularly in
scenarios where the number of source demonstrations is limited.
For further details, please refer to the supplementary materials.

2) Domain Randomization: We implement domain random-
ization in the IsaacLab [85] handler of MetaSim. This involves
four types of randomization:
• Table, Ground, and Wall. Walls (and ceilings) can be added

for tasks that lack a predefined scene. Customizable tables
can also be included for tasks that are performed on tabletops.
The visual materials for these elements are randomly selected
from a curated subset of ARNOLD [36] and vMaterials [84].
The table has ∼300 material options, while the wall and
ground each have around ∼150 material options.

• Lighting Condition. Two types of lighting scenarios can be
specified: distant light and cylinder light arrays. For distant
light, the light’s polar angles are randomized. For cylinder
light, a random n×m matrix of cylinder lights with random
size is added at a fixed height above the agents. In both
scenarios, the intensity and color temperature of the lights
are randomized within a reasonable range.

• Camera Poses. We carefully select 59 candidate camera
poses, with the majority positioned to face the robot directly
and a smaller subset placed at side-facing angles.

• Reflection Properties. The roughness, specular, and metallic
properties of each surface are randomized within reasonable
ranges.
These randomization options can be freely combined. For

example, a scene can include a customized table, walls with
a ceiling, and a set of cylinder lights to simulate an indoor
environment. For details, please refer to the supplementary
materials.

E. ROBOVERSE Dataset

1) Dataset Statistics:
a) Manipulation Dataset: We migrate diverse manipula-

tion datasets from existing source benchmarks [81, 37, 109, 48,
79, 131, 142, 76, 34, 24, 36, 65, 63, 35, 27, 69, 64, 18] into
ROBOVERSE. The number of task categories, trajectories and
assets contributed by each source benchmarks is summarized
in Tab. I. In total, this migration results in 276 task categories,
510.5k trajectories, and 5.5k assets. Representitive tasks with
rich domain randomization are shown in Fig. 8.

b) Navigation Dataset: We migrate vision-and-language
navigation (VLN) tasks into ROBOVERSE. Note that there exists
various VLN tasks with different settings; here, we particularly
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Fig. 8: Dataset Comparison and Gallery. Left: other representative synthetic robotics datasets. Right: the ROBOVERSE dataset.

Source Benchmark
Source

Simulator
# Task

Categories # Trajectories # Assets

ManiSkill [81, 37, 109] SAPIEN 6 19k 1.7k
RLBench [48] CoppeliaSim 80 150k 100
CALVIN [79] Pybullet 7 20k 7
MetaWorld [131] MuJoCo 5 5k 6
RoboSuite [142]&MimicGen [76] MuJoCo 6 6k 12
GAPartNet [34] IsaacGym 4 4k 151
Open6DOR [24] IsaacGym 69 10k 207
ARNOLD [36] IsaacSim 6 3k 30
LIBERO [65] MuJoCo 10 15k 15
Simpler [63] SAPIEN 6 30k 52
RLAfford [35] IsaacGym 4 40k 40
GraspNet [27] - 58 200k 42
GarmentLab [69] IsaacSim 6 6k 3k
UniDoorManip [64] IsaacGym 7 1k 140
GAPartManip [18] IsaacSim 2 1.5k 42

Total - 276 510.5k 5.5k

TABLE I: Migration progress statistics for manipulation tasks
in ROBOVERSE

focus on VLN in continuous environments (VLN-CE) [58], as
it more closely resembles real-world scenarios [11, 136, 137].
Specifically, we construct our dataset based on ROBOVERSE by
integrating MatterPort 3D scenes [9] (90 scenes) and off-the-
shelf instructions from R2R [58] (10k episodes) and RxR [60]
(20k episodes). We provide two types of mobile embodiments,

including the Unitree Dog (a legged robot) and the JetBot (a
wheeled robot), which support different control policies. A
detailed elaboration on the navigation dataset is provided in
the supplementary materials.

c) Humanoid Dataset: We migrate HumanoidBench [102]
tasks for reinforcement learning benchmarks and integrate
tasks, policies, and data samples from Humanoid-X [77] and
SkillBlender [61]. Additionally, we re-implement the UH-1
inference pipeline within our framework. The pretrained policy
successfully enables humanoid robots to follow demonstrated
poses while maintaining stable locomotion across multiple
simulators based on ROBOVERSE.

V. ROBOVERSE BENCHMARK

A. Benchmark Overview

With the collected tasks, assets, and trajectories, RoboVerse
establishes standardized benchmarks for robot learning, includ-
ing both imitation learning and reinforcement learning. We
define a unified training and evaluation protocol within the
RoboVerse platform and implement standardized baselines and
learning frameworks for benchmarking. Specifically, for imita-
tion learning, we introduce different levels of generalization
benchmarks to assess the generalization capability of models.



(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3

Fig. 9: Benchmark Protocol: We define a four-level generalization benchmarking protocol, allocating 90% of the data for
training and 10% for generalization evaluation. From left to right, Levels 0 to 3 corresponds to task space generalization,
environment radomization, camera randomization, lighting and reflection randomization, respectively.

B. Imitation Learning Benchmark

For each imitation learning benchmark, we establish a
standardized evaluation framework with a fixed set of demon-
strations and a controlled evaluation environment. Policies
must be trained exclusively on the provided training data and
assessed within this environment to ensure fair comparison.
To rigorously test generalization capability, we curate training
data from specific domains and evaluate policies on unseen
samples, challenging their adaptability to novel scenarios. We
systematically categorize visual generalization factors into mul-
tiple levels, including task space generalization, environment
setup generalization, camera setting generalization, and lighting
and reflection generalization. Each level introduces controlled
variations to assess a policy’s adaptability and robustness in
increasingly diverse and challenging conditions.

a) Level 0: Task Space Generalization: We establish a
controlled evaluation by standardizing the environment with
consistent camera, materials, lighting, and other parameters.
The task space, including object initialization and instructions,
is split into 90% training and 10% validation to assess
generalization within a fixed setting, as shown in Fig. 9 (a).

b) Level 1: Environment Randomization: Building on the
standardized setup, we introduce scene randomization while
keeping the camera, materials, and lighting fixed [78]. By
varying house, table, and ground configurations, we create
diverse visual inputs to test robustness against environmental
changes [51]. A fixed set of predefined randomized scenes
ensures structured evaluation, as shown in Fig. 9 (b).

c) Level 2: Camera Randomization: To assess generaliza-
tion across camera variations, we introduce different viewing
heights and angles using carefully annotated, realistic camera
poses. Following the 90/10 training/testing split, we ensure
consistent and rigorous evaluation, as illustrated in Fig. 9 (c).

d) Level 3: Lighting and Reflection Randomization:
Real-world environments involve diverse materials and lighting
conditions [113]. To simulate these challenges, we randomize
lighting and reflections, curating realistic object materials and

illumination setups [19]. This enhances robustness testing under
varying conditions, as shown in Fig. 9 (d).

C. Reinforcement Learning Benchmark

In addition to imitation learning, RoboVerse offers a com-
prehensive reinforcement learning (RL) benchmark designed
to accommodate a diverse range of tasks, robot embodi-
ments, and simulation backends. Specifically, we integrate the
PPO [101] algorithm from both STABLE-BASELINES3 [94]
and RSL_RL [98] into our METASIM interface, enabling
straightforward task definition, seamless environment switching,
and standardized performance logging.

Building upon this infrastructure, we have successfully
ported multiple humanoid control tasks from the Humanoid-
Bench [102] benchmark into RoboVerse. Through our adapted
interface for RSL_RL, we have efficiently extended framework
compatibility to support the TD-MPC2 [41, 42] algorithm
from the original benchmark while preserving implementation
fidelity.

VI. EXPERIMENTAL RESULTS

A. Overview

We conduct extensive experiments to validate the effec-
tiveness and practicality of ROBOVERSE. First, we evaluate
baselines on representative tasks from various benchmark
sources to ensure the reliability of the collected datasets and
established benchmarks. This includes assessments of both
imitation learning baselines VI-B and reinforcement learning
baselines VI-C.

Then we further demonstrate the strength of the high-quality
synthetic dataset. We find that synthetic data could significantly
boost world model learning.

B. Results on the Imitation Learning Benchmark

1) Baseline and Task Selection: To genuinely reflect the
data quality of the RoboVerse dataset and provide a standard

1Due to resource and time constraints, we uniformly sample 20 testing
scenarios for the OpenVLA baseline.



Representative Task PickCube StackCube CloseBox MoveSliderLeft PickChocolatePudding NutAssembly Average
Benchmark Source ManiSkill ManiSkill RLBench CALVIN LIBERO RoboSuite -

Diffusion Policy[13] 78M 52.7 53.8 51.5 76.5 50.0 7.1 48.6
ACT[138] 84M 31.7 36.7 68.3 85.0 78.3 0.0 50.0

TABLE II: Baseline Results on ROBOVERSE Imitation Learning Benchmark. We report baseline results on representative
tasks from various benchmark sources to validate the effectiveness and reliability of the ROBOVERSE benchmark.

Task and Generalization Level MoveSliderLeft CloseBox PickCube
Level 0 Level 1 Level 2 Level 3 Level 0 Level 1 Level 2 Level 3 Level 0 Level 1 Level 2 Level 3

Diffusion Policy [13] 76.5 81.3 72.0 60.0 51.5 42.8 20.0 10.4 52.7 11.1 0.0 0.0
ACT [138] 85.0 83.3 43.3 16.6 68.3 73.3 0.0 20.0 31.7 30.0 6.7 3.3

OpenVLA1 [56] 45.0 40.0 35.0 30.0 0.0 0.0 0.0 0.0 40.0 15.0 0.0 0.0

TABLE III: Generalization Performance on Imitation Learning Benchmark. This table presents the experimental results for
each generalization level in our benchmark across different tasks and methodologies. The tasks are divided into distinct levels
(Level 0, Level 1, Level 2, and Level 3) to evaluate performance under progressively challenging scenarios.

Method Simple Language-conditioned Grasping
PickCube MoveSliderLeft Object Set 1 Object Set 2 Object Set 3

OpenVLA 40.0 45.0 46.0 33.3 14.4
Octo 50.0 30.0 42.0 14.4 2.2

TABLE IV: Vision-Language-Action (VLA) Model Results
on ROBOVERSE Imitation Learning Benchmark. Con-
strained with time and resources, we report VLA models’
results on two simple tasks from ROBOVERSE and grasping
tasks with diverse and challenging language instructions. We
split 58 objects in GraspNet into three sets, each containing
progressively more challenging objects based on their geometry.

benchmark for all kinds of imitation learning policy models,
we select both prevailing specialist and generalist models
as baselines of our RoboVerse benchmark. Specifically, for
specialist models, we integrate ACT [138] and Diffusion
Policy [13]. For generalist models, We benchmark our approach
on OpenVLA [56] and Octo [86], both of which we fine-tuned
using our synthetic dataset. ACT is one of the most widely
used methods in bi-manual manipulation. Diffusion Policy [13]
is the first work that applies the conditional denoising diffusion
process as a robot visuomotor policy and achieves great
generalization capabilities. OpenVLA is the largest open-source
vision-language-action model with 7B parameters.

Leveraging the RoboVerse format and infrastructure design,
we are able to evaluate models on different tasks within a
unified platform. To fully test policy models’ performance under
versatile settings, we select one representative task from each of
the source benchmarks integrated by the RoboVerse dataset as
shown in Tab. II. The experiment subset includes PickCube and
StackCube from ManiSkill [81], CloseBox from RLBench [48],
MoveSliderLeft from CALVIN [79], PickChocolatePudding
from LIBERO [65], and NutAssembly on RoboSuite [142].
These tasks not only demand precise Pick-and-Place skills but
also require contact-rich physical interactions with articulated
objects. Through these tasks, the benchmark results can provide
a comprehensive reflection of each model’s performance under

different scenarios.
2) Implementation Details: Due to time and resource

constraints, we implement specialist and generalist models
using different strategies, and all the results are obtained under
the single-task setting. The training and evaluation settings
follow the 90/10 ROBOVERSE benchmark protocol as specified
in V-B. During evaluations, we randomly select ten task settings
from training sets and another ten from the validation sets. The
reported success rates are computed as the averages over three
random seeds.

For each step, the inputs are 256×256×3 RGB images and
a short language description depending on the task settings.
For specialist models, we train from scratch with action in
9-dim robot joint state space. For generalist models, the action
is pre-processed into delta end-effector position space from
absolute end-effector position space, and The gripper action
is discretized into binary values {0,+1}. Owing to the lack
of time and resources, we are only able to fine-tune the
generalist models in the single-task setting. During evaluations,
we employ Curobo [106] as the inverse-kinematics solver to
transform the action to robot joint state space. Specific model
implementation details and hyperparameters are provided in
supplementary materials.

3) Experiment Results: We present the imitation learning
benchmark results in Tab. II and the generalization evaluation
in Tab. III. We further fine-tune large vision-language-action
models on both simple and complex language-conditioned
tasks, as shown in Tab. VIII.

C. Results on the Reinforcement Learning Benchmark
Using STABLE-BASELINES3 and RSL_RL implementations

of PPO, we train policies on tasks from IsaacLab [80] under
consistent hyperparameters.

For additional tasks (humanoid, dexterous hand), the same
PPO-based workflow applies. We successfully migrate the
HumanoidBench [102] from MuJoCo to RoboVerse, enabling
training across multiple simulators (IsaacLab and MuJoCo) with
consistent interfaces. Experiment results demonstrate stable



policy convergence across simulators, achieving comparable
performance to native MuJoCo baselines. Leveraging the
generalizability of RSL_RL, we further extend the benchmark to
support TD-MPC2 [41, 42] algorithm , which exhibits robust
training dynamics in all environments. For implementation
details, reward curve, and extended experimental results, please
refer to the supplementary materials.

D. Augmentation Experiments

To verify the effectiveness of our trajectory augmentation
API, on four representative tasks, we compare the success rates
of trained Diffusion Policy on 50 source demonstrations and
200, 1000, and 3000 generated augmentation demonstrations
under the imitation learning setting. The results presented
in Fig. 10 demonstrate a consistent improvement in model
performance as the number of generated data increases, high-
lighting both the effectiveness and scalability of the trajectory
augmentation API.

Fig. 10: Effectiveness of Trajectory Augmentation. Success
rates of policy trained with augmented dataset and source
dataset.

E. World Model Learning

Recent advances in general-purpose video generation and
interactive world models [110, 6] have shown promising
progress. Yet, the scarcity of gigantic-scale robotic datasets still
impedes the development of robust world models for a wide
range of robotic applications. In this session, we demonstrate
how synthetic data from the RoboVerse simulation can augment
real-world datasets to train more capable robotics world models.

When a model is trained exclusively on 50,000 episodes from
the DROID dataset [54], it generally respects action conditions
but struggles to accurately capture physical interactions between
the gripper and target objects. Notably, the objects appear
“warped” during contact with the gripper, as shown in Fig. 11.
By incorporating an additional 50,000 synthetic episodes from
RoboVerse to create a combined dataset of 100,000 episodes,
the model predictions improve with regard to preserving
object geometry. However, merely “watching videos” remains
insufficient for learning the intricate physical interactions in
DROID.

In contrast, training solely on the RoboVerse-50K or on
the DROID-RoboVerse-100K dataset and then validating on

Ground Truth Train on DROID Trained onDROID-Roboverse 

Fig. 11: Ablation Study of Action-conditioned World Model
Learning. We compare the qualitative results of an action-
conditioned world model trained on pure DROID and DROID-
RoboVerse datasets, with evaluations sampled from the DROID
dataset.

RoboVerse samples, we observe that the generated frames are
physically more realistic in most scenes, with details in the
supplementary materials. This improvement can be attributed
to the extensive randomization and augmentation available in
RoboVerse. Conversely, a model trained solely on DROID
data fails to transfer effectively to the RoboVerse scene. We
hypothesize that this shortcoming stems from limited samples
per scene coverage in DROID and incomplete gripper visibility
in the camera view.

F. Imitating the RoboVerse Dataset Enables Direct Sim-to-Real
Transfer

The RoboVerse system seamlessly integrates a powerful
physics engine with a high-quality renderer, ensuring the
generation of realistic, high-fidelity data. To demonstrate its
potential, we conduct experiments validating its effectiveness
in direct sim-to-real transfer. As shown in Fig. 13, we fine-
tune OpenVLA[56] on the RoboVerse dataset and transfer the
learned policy to real-world scenarios without additional fine-
tuning. The model successfully manipulates unseen objects in
previously unseen real-world environments, showcasing the
robustness and generalization capabilities of our system. The
quantitative results on more challenging language-guided tasks,
as shown in Tab. V, further demonstrate the high success rate
of models trained on the RoboVerse dataset. Additional details
are provided in the supplementary materials.

G. Reinforcement Learning in RoboVerse Enables Sim-to-Sim-
to-Real Transfer

Large-scale parallel environments offer significant potential
for large-scale exploration and are highly effective for rein-
forcement learning (RL) tasks. However, while they provide
excellent efficiency, their accuracy may be limited in certain



Fig. 12: Sim-to-Real and Sim-to-Sim-to-Real Experiment Results. We demonstrate that learning within the RoboVerse
framework enables seamless direct Sim-to-Real transfer for manipulating unseen objects in new environments (imitation learning)
and Sim-to-Sim-to-Real transfer for whole-body humanoid control (reinforcement learning).

Fig. 13: Generalization of Sim-to-Sim-to-Real. This figure
shows the in-the-wild generalization ability of our lower-body
RL policy with upper-body PD control by the sim-to-sim-to-
real approach.

scenarios [25]. To address this problem, Sim-to-sim evalu-
ation and fine-tuning present promising solutions [63]. The
RoboVerse platform seamlessly supports such functionalities,
enabling robust sim-to-sim and sim-to-real transitions. We
further demonstrate the effectiveness of sim-to-sim-to-real
generalization through comprehensive experiments, highlight-
ing the platform’s ability to bridge simulation and real-world
performance.

GraspNet Objects Pick up
Wash Soap

Lift
Mouth Rinse

Grasp
Green Dish

Octo[86] 5.0/10.0 3.0/10.0 6.0/10.0
OpenVLA[56] 7.0/10.0 8.0/10.0 5.0/10.0

TABLE V: Direct Sim-to-Real. We fine-tune two baseline
models using demonstrations adapted from GraspNet [27]
to validate the effectiveness of the RoboVerse dataset. The
final performance score for each task is reported, where
a baseline receives 1 point for successfully grasping the
target. Additionally, we adopt the partial reward scheme from
OpenVLA, awarding 0.5 points when the gripper makes contact
with the target.

VII. LIMITATIONS

While ROBOVERSE provides a comprehensive and scalable
platform, several limitations remain. First, the integration of a
unified format for non-rigid objects is not yet fully supported,
which we leave for future work to develop. Additionally,
while our large-scale dataset presents significant potential for
pretraining a foundation model, this exploration falls beyond
the scope of this paper due to resource constraints. Furthermore,
despite our extensive efforts to fully reimplement and optimize
all baseline methods within the ROBOVERSE baselines, some
implementations may still be suboptimal. Our primary goal is
not to directly compare policy performance but to demonstrate



that the system is comprehensive, supports diverse policies,
and ensures strong alignment between simulation and real-
world performance. While we have made every effort to build
a robust platform, it is inevitable that some oversights or errors
may remain. We encourage the broader research community to
contribute to maintaining and refining the baselines, fostering
collaboration to further enhance the platform’s capabilities.
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VIII. SIMULATORS OVERVIEW

In the field of robotics, simulators play an important role.
It is the womb of a robot, taking responsibility for training
and testing a robot’s behaviors before it was "born" into the
real world. Therefore, the functionalities are crucial for a
successful robotic application. Users require different functions
of simulators according to their specific scenarios: whether
it is a photorealistic task which requires accurate rendering
of a close-to-real virtual world, or a massive parallel scene
that is designed for efficient reinforcement learning. All the
requirements may influence the choice of the simulator. In
order to reduce the pain users need to endure in getting them
familiarized with each new simulator, we incorporated multiple
simulators into the RoboVerse platform and listed specifica-
tions of the simulators currently supported by RoboVerse in
Fig. VI.

Due to the complexity of physics simulation and rendering,
current simulators cannot depict the real world well enough.
Our experiments revealed some common issues of nowadays
simulators in the basic physics laws. The experimental results
on fundamental conservation laws may be a pessimistic sign
on our hope of direct sim-to-real transfer of more complicated
robotic behaviors.

We conducted experiments on three basic conservation laws
of physics in three simulators.

In the experiments for Conservation of Momentum, two rigid
bodies are placed in a gravity-free environment, their initial
states are set to have an elastic collision.

In the experiments for Conservation of Angular Momentum,
one or two rigid bodies are placed in the gravity-free environ-
ment, and their initial states are set to rotate. We calculate and
record the overall angular momentum as the system evolves.

In the experiments for Conservation of Kinetic Energy, two
rigid bodies are placed in the gravity-free environment, and
their initial states are set to have a rotation-free elastic collision.
This setup allows us to directly observe the conservation of
kinetic energy regardless of the results of experiments on
angular momentum.

From the results listed in Fig. 14, we can easily notice that
basic conservation laws are not kept in the three simulators.
However, different simulators behave differently in different
experimental setups, which indicates that depending on the
needs of different tasks, we may need to choose different
simulators for more accurate results. This highlights the
necessity of a tool that helps users to easily transfer tasks
among simulators.

IX. THE METASIM FRAMEWORK

A. Architecture Overview

The METASIM framework is a unified simulation framework
as shown in Fig. 15. On the front-end side, it provides user-
friendly Gym APIs as well as easy-to-use parallel environment
support. On the back-end side, it supports multiple simulators
to allow seamless transfer of tasks across simulators. Users only
need to master simple skills on writing a simulator-agnostic



Simulator Physics Engine Rendering Sensor Support Dynamics GPU Open

SAPIEN [122] PhysX-5, Warp
Rasterization
RayTracing RGBD; Force; Contact Rigid; Soft; Fluid ✓ ✓

Pybullet [16] Bullet Rasterization
RGBD; Force
IMU; Tactile Rigid; Soft; Cloth ✓

MuJoCo [111] MuJoCo Rasterization
RGBD; Force
IMU; Tactile Rigid;Soft;Cloth ✓ ✓

CoppeliaSim [97]
MuJoCo; Bullet

ODE; Newton; Vortex Rasterization RGBD; Force; Contact Rigid;Soft;Cloth ✓

IsaacLab [80] PhysX-5 RayTracing
RGBD; Lidar; Force
Effort; IMU; Contact

Proximity

Rigid; Soft
Cloth; Fluid ✓

IsaacGym [72] PhysX-5, Flex Rasterization RGBD; Force; Contact Rigid; Soft; Cloth ✓

Genesis [2] Genesis
Rasterization
RayTracing RGBD; Force; Tactile Rigid; Soft ✓ ✓

TABLE VI: Comparison of Physics Simulators [104]. The column GPU denotes whether the simulator can use GPU-accelerated
computation. The column Open denotes whether the simulator is open-source.

(a) Momentum (b) Angular (c) Kinetic Energy

Fig. 14: Three series of experiments on conservation laws in
simulators. Blue, orange and green lines are data collected
from Sapien, Isaacgym and Pybullet respectively.

MetaConfig configuration class, the environment will then
be automatically instantiated with the designated back-end
simulator.

B. MetaConfig Configuration System

The METASIM framework uses MetaConfig, a unified
configuration class to describe a scenario in simulation envi-
ronments.

We designed a configuration system that set up the simulator,
define the tasks, set up the domain randomization. In order to
run the same setting of environments across different simulators,
the configuration system is defined to be simulator-agnostic as
much as possible. For simulator-specific settings (e.g. rendering

mode, physics engine solver type, etc.), there is a seperate
simulator-specific part which defines those things.

To make changing the settings and debug more easily, we
design the configuration system in a Hydra[125]-like way,
making each item in the configuration system can be modified
from commandline just like Hydra [125]. The configuration
system is implemented based on Python dataclass, and could
therefore use Python type annotation to help user use them.

In order to run the tasks seamlessly across all simulators,
it is necessary to define them in a simulator-agnostic way.
We configure the task and define its objects list, robot in use,
success checker and the reward. The success checker is used
to determine when the task is successfully execucated, and is
the most difficult part in task definition. To standardize, we
offer some structured success checker templates which cover
the most cases, and leave option for users to define a callback
function for flexibility to implement those stuctured success
checker could not cover.

C. Aligned Simulation APIs

METASIM support different simulator backends, including
IsaacSim [85], IsaacGym [72], MuJoCo [111], PyBullet [16],
SAPIEN [122], CoppeliaSim [97, 47]. The framework is
implemented in Python, as these simulators either natively
support Python or provide Python APIs.

Common simulator operations are unified in a Handler
class. Each handler supports only tree basic APIs:
get_state(), set_state() and step(). The
get_state() method takes a descriptive Python dict
(e.g., {object_name: {’pos’: ..., ’rot’: ...,
’...’: ...}}) as input, and returns current simulation
states according to the dict in another Python dict structured
in the same manner. The set_state() method also takes
a descriptive Python dict as input, and modifies current



Fig. 15: Comparison between the METASIM and the other simulation environments. Left: Other simulator and benchmark, using
self-defined data format, simulator-associated assets, simulator-dependent task definition, and scripts. Right: The METASIM,
decoupling all components to be agnostic to specific simulators or benchmark environments.

simulation states to the ones included in the dict. The step()
method will prompt the simulation to proceed one timestep.

D. Gym API Wrappers

To support building learning environments, we define an Env
class built on top of Handler. It offers Gymnasium-like APIs
(step, reset, render, and close), implementing these
methods by leveraging the underlying Handler methods.

It is worth noting that most simulation environments provide
the underlying APIs (corresponding to our Handler) and
upper-level environments (corresponding to our Env) seper-
ately, such as SAPIEN [122] with ManiSkill [109], Isaac-
Sim [85] with IsaacLab [80], CoppeliaSim [97]/PyRep [47]
with RLBench [48], and Mujoco [111] with Mujoco Play-
ground [132]. This fact proves our Handler and Env two-
level abstraction reasonable.

E. Backend Support

1) Isaac Lab: Isaac Lab [85] is an advanced robotics
simulation platform developed by NVIDIA. By leveraging high-
fidelity physics, GPU acceleration, and photorealistic rendering,
it enables rapid prototyping, testing, and deployment of AI-
driven robotics solutions in virtual environments. Through
seamless integration with NVIDIA’s Omniverse framework,
Isaac Lab offers robust features such as domain randomization,
sensor simulation, and support for large-scale reinforcement
learning, making it a powerful tool for both research and
industrial applications.

A key advantage of Isaac Lab is its compatibility with the
Isaac ROS infrastructure, which includes valuable models such
as foundationpose [121, 120] and curobo [107], among others.

2) Isaac Gym: Isaac Gym [72] is a physics simulation
environment designed for reinforcement learning research.
Although it remains available for download, official support
has ended. Nevertheless, multiple works published before
2024—such as hora [91], humanoid-gym [38], and IPC-
graspsim [55]—were developed using Isaac Gym.

Key features of Isaac Gym include support for importing
URDF and MJCF files with automatic convex decomposition,
a GPU-accelerated tensor API for managing environment states
and actions, and a range of sensors (e.g., position, velocity,
force, torque). Additional capabilities include runtime domain

randomization of physics parameters, Jacobian and inverse
kinematics support, and customizable friction settings.

3) Mujoco: MuJoCo [111] is a physics engine and simu-
lation framework designed to accurately model the dynamics
and control of complex robotic systems in real-time. Its
name, MuJoCo, stands for Multi-Joint dynamics with Contact,
highlighting its primary emphasis on efficient computation of
contact forces and multi-joint dynamics. The engine supports
advanced features such as frictional contact models, user-
defined actuators, and customizable sensor modalities, allowing
researchers and developers to prototype, test, and refine control
algorithms across a wide range of robot morphologies and
tasks.

A key strength of MuJoCo is its computational precision,
which enables high simulation throughput and real-time in-
teractive control. It supports rigid-body dynamics, articulated
mechanisms, and a variety of constraints, making it suitable for
tasks involving locomotion, manipulation, and reinforcement
learning. Furthermore, MuJoCo’s flexible XML-based model
description streamlines creating and modifying simulated
environments, providing a straightforward way to experiment
with novel designs. The compatibility between MuJoCo and
Brax offers a high-speed, differentiable pipeline crucial for
reinforcement learning. This powerful blend of accuracy, speed,
and flexibility has solidified MuJoCo’s status as a leading choice
in robotics research and machine learning, particularly for
advanced control, motion planning, and reinforcement learning
applications [29].

4) Genesis: Genesis[2] is a comprehensive physics platform
developed for robotics and physics simulation research, unify-
ing multiple core capabilities in a single environment. At its
foundation is a universal physics engine, rebuilt from the ground
up to simulate diverse materials and physical phenomena while
seamlessly integrating various solvers. Alongside this engine,
Genesis provides a swift, Python-friendly robotics simulation
toolkit, an efficient photo-realistic rendering system, and a
data-generation module that converts natural language prompts
into multi-modal datasets. We leverage the Genesis backend
to support loading, simulation, and rendering in ROBOVERSE
workflow.

5) Sapien: SAPIEN [122] is a robot simulation framework
that allows highly efficient simulation and rendering of robotic



tasks. It uses PhysX [83] as the underlying physics engine. We
supported the released version Sapien 2.2 for the METASIM
framework.

We use the multipocessing library to support parallel environ-
ments in the Handler class for Sapien. When instantiating the
environment from configurations, a desired number of processes
are forked to run the simulation of different environments. To
support the get_states and set_states API, data for
different environments are distributed to different processes,
and the return values are then gathered.

6) Pybullet: PyBullet [17] is a fast and easy-to-use robotics
simulator. It uses its own physics solvers for accurate and effi-
cient simulations. We supported the released version PyBullet
3.2 for the METASIM framework.

We use the same techniques as for Sapien to achieve parallel-
environment simulation.

F. Hybrid Simulation Implementation

METASIM allows launching two simulators in one single
process with one command. Taking our demo collection
command as example: python collect_demo.py --sim=mujoco

--renderer=isaaclab --task=$task. The implementation is illus-
trated in Code. 2.

class HybridEnv:
def __init__(self, env_physic: Env,
env_render: Env):

...
def step(self, action):

env_physic.handler.set_states(action=
action)

phys_states = env_physic.handler.
get_states()

env_render.handler.set_states(states=
phys_states)

env_render.handler.refresh_render()
states = env_render.handler.get_states()
return ...

Code 2: Pseudocode for implementing hybrid simulation using
two different simulator environments simultaneously. The
core of this implementation is using states as a unified
representation across both simulation environments.

X. ASSET CONVERSION

A. Asset types

The diverse landscape of robotic assets, stemming from
prior research initiatives [142, 48, 81] and a multitude of
software platforms [111, 72, 122], necessitates a robust strategy
for managing a wide array of file formats. To facilitate
dependable cross-simulator training and uphold data integrity
throughout the development lifecycle, the establishment of
an efficient and reliable asset conversion pipeline is of
paramount importance [26]. Such a pipeline is crucial for
ensuring seamless interoperability, minimizing potential data
loss or inaccuracies, and promoting the uniform application
of metadata and configurations across disparate simulation
environments. A selection of frequently encountered asset

formats includes, but is not limited to, MuJoCo XML control
files [111], URDF files [8], and USD files [85].

The three predominant file formats in robotics simulation:
MJCF, URDF, and USD. Each of them serves distinct purposes
and offers unique capabilities. MJCF (MuJoCo Configuration
Format) stands out for its exceptional expressiveness in
physics simulation, featuring sophisticated capabilities to model
complex dynamical systems including tendons, actuators, and
advanced joint configurations, along with an integrated compiler
for handling complex compile-time computations [111]. URDF
(Unified Robot Description Format), while more constrained in
its feature set, has emerged as the de facto standard in robotics
due to its remarkable cross-platform compatibility and universal
adaptability across various simulation environments including
Isaac Sim [85], Isaac Gym [72], MuJoCo [111], Gazebo, and
PyBullet [16], making it ideal for robot model exchange
despite its limitations in representing parallel mechanisms
or complex sensor configurations [8]. USD (Universal Scene
Description), originally developed by Pixar Animation Studios,
excels in high-fidelity rendering and scene composition through
its sophisticated layering system and variant sets [22], making
it particularly valuable for applications requiring advanced
visual properties and collaborative workflows [84], although
its physics simulation capabilities are more limited compared
to dedicated robotics formats like MJCF [26].

Features MJCF URDF USD
Basic Geometries ✓ ✓ ✓

Mesh Support ✓ ✓ ✓

Texture Support ✓ Limited ✓

Material
Properties

✓ Basic ✓

Physics Properties ✓ ✓ Limited
Joint Types Many Basic Basic
Collision Proper-
ties

Advanced Basic Advanced

Deformable
Objects

✓ ✗ ✓

Animation
Support

Limited ✗ ✓

Scene
Composition

Basic ✗ Advanced

File Format XML XML ASCII/Binary

TABLE VII: Comparison of Robot Description Formats

B. Conversion Pipeline

Given that our simulation pipeline primarily utilizes Isaac
Sim for rendering while many of our assets are originally stored
in MJCF format, a two-stage conversion pipeline (MJCF →
URDF → USD) becomes necessary and advantageous. This
approach leverages URDF as an intermediate format for several
reasons. First, while direct conversion from MJCF to USD is
theoretically possible, such conversion would be complex and
error-prone due to MJCF’s rich feature set for physics properties



(like tendons and actuators) that lack direct equivalents in
USD [115]. Instead, converting to URDF first allows us to
standardize the robot’s basic kinematic and dynamic properties
in a format that has well-established conversion tools and
widespread support. The subsequent URDF to USD conversion
benefits from Isaac Sim’s robust URDF importing capabilities,
which have been extensively tested and optimized for robotics
applications. This two-stage pipeline thus ensures more reliable
asset conversion while maintaining essential physical properties
and compatibility across different simulation environments.

1) MJCF to URDF conversion: We implemented our own
MJCF to URDF converter by first parsing everything with
MuJoCo’s MJCF importer, then exporting all texture, collision
mesh and joint information to the correct URDF format. The
inspiration is taken from Genesis [2], which they built their
own class for each asset object that encode all joint, texture
and mesh information. We then recursively generate the body
information to URDF and align everything with texture.

a) Parsing Link, Joint, and Body Information from the
MJCF file: To parse link, joint, and body information from
the MJCF file, we leverage MuJoCo’s parsing capabilities
to load the MJCF XML into a MuJoCo model structure.
From this parsed model, we employ a recursive approach,
starting from the root body and descending into each child
body to systematically process the hierarchical structure. For
each body, we extract detailed link properties such as name,
position, orientation, inertial characteristics, and associated
geometry. Simultaneously, we parse joint information connected
to each body, including joint type, limits, and axis of motion.
All of this extracted link and joint data is systematically
organized and stored in dictionary structures. These dictionaries
serve as intermediate representations, holding all the necessary
information from the MJCF model in a structured format
that is readily accessible for subsequent stages of the URDF
conversion process.

b) Aligning Meshes and textures: The management of
collision meshes across existing asset libraries presents a
notable challenge, as these assets are typically stored in various
formats including .msh, .obj, and .stl files. While URDF natively
supports .obj and .stl formats, the conversion of .msh files
into URDF-compatible formats requires careful consideration.
Although MuJoCo’s repository provides a conversion utility
for transforming .msh files to .obj format—accomplished by
parsing the .msh files through the MuJoCo interface and
subsequently exporting vertex and face information—this ap-
proach introduces potential complications with texture mapping
alignment.

The complexity arises from the specific requirements of
texture files, which are predominantly stored as albedo PNG
files. These textures depend on precise UV mapping coordinates
within the .obj file to ensure proper alignment. The current .msh
to .obj conversion utility provided in the MuJoCo repository
does not adequately address texture support, leading to potential
misalignment issues in the converted models. This limitation
is particularly evident in comprehensive robotics frameworks
such as Libero [65] , where both static and articulated objects

frequently exhibit texture alignment discrepancies following
the .msh to .obj conversion process.

Fortunately, we discovered that many asset collections
maintain redundant mesh representations, often including a
properly UV-mapped .obj file alongside the .msh file, typically
sharing the same filename or designated as "textured.obj".
Leveraging this observation, we implemented a robust mesh
alignment pipeline that follows a hierarchical decision process:

• First, the system searches for an existing .obj file within
the same directory as the .msh file

• If found, this pre-existing .obj file is utilized, ensuring
proper texture alignment

• In the absence of a pre-existing .obj file, the system
proceeds with the .msh to .obj conversion

• In the latter case, users receive a warning notification
regarding potential texture misalignment issues

Following the mesh format resolution, the pipeline sys-
tematically maps these processed mesh files back to their
corresponding links within the URDF structure, maintaining
the integrity of the robot’s geometric representation while
preserving texture information where possible.

c) Building URDF: The assembling procedure after all the
conversions become very aparent: we first processes robot links
and joints, incorporating their properties and relationships into
the URDF format. This automated approach ensures a robust
and flexible method for generating URDF files, accommodating
a wide range of robot configurations and properties derived
from the preceding conversion steps.

Even though this pipeline roughly works for most of the
MJCF, for some specific MJCF files in some specific folder,
we have to modify our conversion approach on a case by case
basis. Below is a table for some special treament we employed
to specific packages, and its conversion success rate:

Despite the general efficacy of the described pipeline across a
broad spectrum of MJCF assets, it is important to acknowledge
that certain MJCF files, particularly those within specific pack-
ages or directories, necessitate bespoke conversion strategies.
These exceptions arise due to the inherent complexity and
variability in MJCF file structures across different projects and
asset libraries. To address these unique cases, we have adopted
a tailored approach, implementing case-specific modifications
to our conversion pipeline as required. The subsequent table
details instances where such specialized treatment has been
applied, along with the corresponding conversion success rates
achieved for each package.

2) URDF to USD conversion: IsaacSim has implemented
a robust solution for converting URDF files to USD for-
mat. The conversion process comprehensively preserves the
robot’s structural and kinematic information, including joint
hierarchies, geometric properties, and physical attributes. The
implementation demonstrates exceptional fidelity in translating
complex robotic descriptions, ensuring that all essential compo-
nents—such as joint configurations, collision geometries, and
visual representations—are accurately encoded in the resulting
USD files.



Given the proprietary nature of IsaacSim’s conversion
implementation, we utilize their framework as an external
tool in our pipeline. This approach leverages the proven
reliability and performance of IsaacSim’s converter while
maintaining compatibility with our broader system architecture.
The conversion process serves as a critical bridge between
standard robotics formats and the high-performance USD
representation required for our simulation environment.

XI. TASK AND DATA MIGRATION

A. ManiSkill
ManiSkill [81, 37, 109] provides a series of robotic manip-

ulation tasks under single-arm or dual-arm settings.
Tasks and assets: We migrate basic single-arm tasks and

demonstrations to RoboVerse, including the pick-and-place
tasks like PickCube and PickSingleYCB, as well as the in-
sertion tasks like PegInsertionSide and PlugCharger.
The corresponding assets are manually crafted with primitives
or process from the mesh files, with proper physics API set
up.

Demonstrations: For each task, a great number of
demonstration trajectories are available in the released data.
Noteworthy, the data does not come with the initial scene states,
which are obtained by replaying the demonstrations within the
SAPIEN simulator. With the specified seed set, the states are
recovered by the random samplers.The success checkers are
implemented according to the task designs.

B. RLBench
RLBench [48] is a large-scale benchmark and learning

environment for robotic manipulation, featuring 100 diverse,
hand-designed tasks ranging in complexity, from simple actions
like reaching to multi-stage tasks like opening an oven and
placing a tray inside. Each task includes an infinite supply of
demonstrations generated via waypoint-based motion planning.

Tasks and assets: We roll out ∼2K trajectories in
RLBench [48] for each task, and migrate them to ROBOVERSE.

C. CALVIN
CALVIN [79] provides 6-hour teleopreation trajectories on

4 environments, each involve an articulated table with three
blocks in blue, pink, or red.

Tasks and assets: We migrate the demonstrations in all 4
environments and transform the original assets (URDF for the
table, and primitives for the cubes) into USD files with proper
physics APIs.

Demonstrations: We segment the trajectories according
to the text annotations, which specified the task category (e.g.,
PlaceInSlider), the text annotation (e.g., place the red
block in the slider), and the timestamps of the demonstration
segment. The states of the first frame is adopted as the scene
initial states.

Success checkers: We carefully implement the success
checkers according to the original implementation to make
sure the failed executions can be filtered out. This is because
the coarsely annotated timestamps in the dataset, which may
cause the failed execution in part of the demonstrations.

D. MetaWorld

MetaWorld [131] is a widely used benchmark for multi-
task and meta-reinforcement learning, comprising 50 distinct
tabletop robotic manipulation tasks involving a Sawyer robot.

Tasks and Assets: We integrate five representative tasks
into RoboVerse: drawer open, drawer close, door close, window
open, and window close. The corresponding assets are manually
converted from MJCF to USD files with appropriate physics
APIs.

Demonstrations: As the benchmark does not provide demon-
strations, we generate trajectories for each task by rolling out
reinforcement learning policies from [123].

E. Open6DOR

Open6DOR is a benchmark for open-instruction 6-DoF
object rearrangement tasks, which requires embodied agents
to move the target objects according to open instructions that
specify its 6-DoF pose.

Tasks and Assets: The synthetic object dataset comprises
200+ items spanning 70+ distinct categories. Originally derived
from YCB[7] and Objaverse-XL[22], the objects are carefully
filtered and scaled using a standardized format of mesh
representation. Overall, the Open6DOR Benchmark consists of
5k+ tasks, divided into the position-track, rotation-track, and
6-DoF-track, each providing manually configured tasks along
with comprehensive and quantitative 3D annotations.

Success checkers: We determine success by comparing
the target object’s final pose with the annotated ground-truth
pose range.

F. ARNOLD

Arnold [36] is a benchmark for language-conditioned manip-
ulation. The benchmark uses motion planning and keypoints
for robot manipulation tasks, focusing on fine-grained language
understanding.

Tasks and Assets: : We integrate six out of eight tasks
from Arnold into RoboVerse: picking up objects, reorienting
objects, opening/closing drawers, and opening/closing cabinets.

Demonstrations: As the benchmark does not use trajectory-
level demonstrations, we use motion planning for trajectory
generation to interpolate between keypoints

G. RoboSuite & MimicGen

RoboSuite [142] provides a suite of task environments for
robotic manipulation, built on the MuJoCo physics engine.
Each task is implemented as a separate class, with most
configuration details embedded in the source code. Based
on these environments, MimicGen [76] offers thousands of
demonstrations, serving as a widely used benchmark for
imitation learning.

Tasks and Assets: For tasks with separate object descrip-
tion files (MJCF), we directly migrate the corresponding assets
through our Asset Conversion pipeline. However, some tasks
contain hard-coded assets within the source code, such as
a hammer composed of multiple cubes, cylinders and other
primitives with carefully designed relative poses. To integrate



these tasks, we will manually reconstruct the assets within
our framework. We also argue that hard-coded asset and task
definitions, as opposed to modular task descriptions, are not
scalable for future robotic task benchmarking.

Demonstrations: We convert MimicGen demonstrations
into our format. Specifically, we transform the robot actions
from 6-DoF Cartesian space representations to joint space.
Additionally, the state of the first frame is adopted as the initial
scene state.

Success Checkers: We meticulously implement success
checkers based on the original definitions to ensure failed
executions are effectively filtered out.

H. SimplerEnv

SimplerEnv is a set of tasks and methods designed to
do trustworthy benchmarking in simulation for manipulation
policies that can reflect the real-world success rate.

There are in total 25 different tasks in SimplerEnv. We ignore
all tasks that are just a subset of another task and migrated in
total 6 tasks and 52 object assets to ROBOVERSE. The tasks
all use Google Robot.

SimplerEnv provided some controller models trained with
RT-1 [4] and RT-X [15] dataset. We did not use the trajectories
from the dataset directly because some environmental settings
are different from the environments from SimplerEnv. We used
the trained model to collect trajectories. Hooks are inserted
into the original SimplerEnv codebase to extract and maintain
the recordings at different stages of simulation. We then rollout
the model trained with RT-1 dataset on each task to collect the
trajectories.

I. GAPartNet

For tasks in GAPartNet [34], we generate both motion
planning [34] and reinforcement learning [32] trajectories.
GAPartNet is implemented in IsaacGym [72] with various
articulated objects. To integrate it into RoboVerse, we first
align all articulated object initial states to the MetaSim format
and convert the asset format to USD for compatibility across
different simulators.

For trajectory generation:
(1) Motion Planning: GAPartNet [34] introduces a part-

centric manipulation approach. We roll out heuristics to
generate manipulation trajectories, providing three demon-
strations per part with different object and part initial states.
(2) Reinforcement Learning Rollout: The follow-up work,
PartManip [32], proposes several reinforcement learning meth-
ods. We re-train all policies based on our robot setup and
roll out trajectories for dataset collection. With aligned task
configurations, trajectories, and assets, we successfully adapt
GAPartNet into RoboVerse.

J. GAPartManip

Instead of providing direct demonstrations, GAPartMa-
nip [18] offers a large-scale, part-oriented, scene-level dataset
with annotations for actionable interaction poses. We utilize the
mesh-level grasping pose annotations in this dataset to generate
diverse demonstrations for articulated object manipulation.

Tasks and Assets: We currently implement two tasks:
OpenBox and OpenToilet. For the OpenBox task, we
collect 12 object assets from the Box category in the original
dataset. For the OpenToilet task, we gather 30 objects from
the Toilet category. We convert these assets into USD files
with appropriate physics APIs to ensure compatibility with our
simulation environment.

Demonstrations: We generate demonstrations for our tasks
in simulation using motion planning with CuRobo [106]. First,
we filter potential grasping poses for the target object link by
assessing their feasibility through motion planning. Specifically,
we discard poses that the end-effector cannot reach or that
would cause a collision between the robot and the object. Next,
we generate an end-effector pose trajectory to complete the
task using heuristics. Based on the object’s kinematic tree, we
could define an ideal trajectory. We then apply motion planning
to perform inverse kinematics, computing the corresponding
joint poses of the robot along this trajectory. Finally, we
execute the planned trajectory in simulation to verify task
completion, saving successful trajectories as demonstrations.
The entire demonstration generation process is conducted in
IsaacSim [85].

Success Checkers: To determine task success, we require
the manipulated object to be opened by at least 60 degrees for
all tasks.

K. GraspNet-1B

GraspNet-1B [27] is a general object grasping dataset for
predicting 6 DoF grasping pose given partial pointcloud input.
It contains 256 realworld tabletop scenes consists of total 88
different objects. We carefully filter out 58 objects as our
target grasping objects based on the availability of purchasing
real items because we need to evaluate our policies to grasp
them in the real world experiments. To generate grasping
demonstrations, we use CuRobo [107] as motion planner to
generate robot end effector trajectories starting from a fixed
initial pose and ending to an target object grasping pose. The
grasping pose is obtained from the grasping annotations used to
train GraspNet [27]. We also randomized the object positions
to generate more diverse layouts. Finally, we validate the
trajectories in our framework and filter out invalid ones by
controlling robots to follow the generated grasping trajectories.
In the end, we successfully generated about 100k valid grasping
trajectories.

L. GarmentLab

GarmentLab [69] is the first robotic manipulation benchmark
for deformable object and garment manipulation. It integrates
10 categories of versatile garment assets and the total number
of USD assets reaches 6k. To generate manipulation demon-
strations, we directly roll out the trajectories provided by the
official codebase in IsaacSim and collect the corresponding
state information in a parallel process. Although the trajectory
provided by the official codebase is limited and hard-coded,
we further extend the number of demonstrations by applying
different garments and textures, and all the demonstrations are



validated by the original success checker. Finally, we have
successfully collected 6k trajectories.

M. UniDoorManip

UniDoorManip [64] provides an articulated manipulation
environment reflecting different realistic door manipulation
mechanisms, and a large-scale door dataset containing 6 door
categories with hundreds of door bodies and handles stored in
URDF format. We convert those door assets into USD format
with physics APIs from IsaacSim and manually further verify
the correctness of the joint-link relationship. Demonstrations
are collected by directly rolling out the hard-coded trajectories
in IsaacGym. We eventually collect about 1k successful legal
demonstrations.

N. RLAfford

RLAfford [35] investigates the generalization ability of
Deep Reinforcement Learning models on articulated object
manipulation tasks with the presence of a computer vision
model that is co-trained with it in an end-to-end manner. This
work provided a dataset of articulated objects and 8 tasks for
benchmarking.

In Roboverse, we have adapted 4 tasks (open cabinet, open
drawer, close cabinet, close drawer) and in total 40k trajectories
from RLAfford.

In the task adaptation, we included 40 articulated objects
from the RLAfford dataset, and uses the same robot description
file from RLAfford. Then we record 1000 trajectories for each
object in its corresponding task.

The trajectory recording is achieved with several hooks we
inserted into the original RLAfford codebase. The hooks are
used to extract and maintain the recordings at different stages
of simulation. We evaluated the released RLAfford model with
hook-inserted scripts. In the initialization stage, objects and
robots are initialized with randomization, their pose, and DoF
information are recorded. For each simulation step, the DoF
position information of objects and robots is recorded in the
trajectories. In the end, for each object, a separate trajectory
file of 1000 different trajectories is saved in the RoboVerse
supported format.

O. LIBERO

LIBERO [65] manages data loading and task execution
through a combination of INIT(initialization files), BDDL (Be-
havior Description Definition Language), and HDF5 datasets.
Specifically, the initialization files define scene layouts, object
properties, and basic task goals; the BDDL format captures
semantic details and object affordances; and the HDF5 files
store structured data such as object positions and robot actions
for dynamic retrieval at runtime.

To migrate a LIBERO task into MetaSim, we parse the
relevant BDDL file to identify which objects are involved and
what type of manipulation context is required. Then we get
the robot and object initial states from the INIT files, followed
by the corresponding robot actions from the HDF5 dataset.
These elements are combined into our PKL file format while

also recording the participating objects in our MetaCfg. This
process ensures that all necessary components of a LIBERO
task, initial states, and action data, are fully translated and
ready for execution in MetaSim.

We further augment the data by randomly sampling initial
positions around each LIBERO demonstration, thus increasing
the effective number of demos well beyond the original 50 per
task. The spatial sampling range is dynamically chosen based
on the task context and object dimensions, ensuring that the
augmented configurations remain physically plausible.

XII. TASK GENERATION

A. Robot & Object Generation Protocol

Our task generation pipeline (Fig. 16) begins with a user
prompt describing the desired theme or constraints of a robotic
task (e.g., "place the butter in the drawer and close it"). From
here, the system proceeds in two main phases, mediated by
large generative model calls:

1) call_gpt_to_generate_task(): Conceptual
Task Generation. This initial function queries the model
for a high-level task overview. It requests:
• A unique task name (e.g., “ButterDrawerTask”).
• A short, human-readable instruction (e.g., “Place the

butter in the drawer, then close the drawer.”).
• A candidate list of robots and objects to appear in

the scenario, referencing an internal asset library (see
below).

The large generative model draws on its generative abilities
to propose creative or contextually relevant tasks, while
remaining loosely guided by the user prompt.[119, 118,
39, 140] As shown in Fig. 16, the model might retrieve a
“drawer” asset from a different benchmark and a “butter”
asset from a separate dataset, combining them into a single
scene idea.

2) call_gpt_to_get_init_state(): Physical Lay-
out Refinement. After receiving the conceptual descrip-
tion, we call the model again to specify x,y coordinates
for each listed item. During this second phase, user
can provide the prompts that include minimal bounding
constraints (e.g., permissible table edges, object height)
to help modelgenerate various initial states by few-shot
learning.

Asset Library. To ground the large generative model’s outputs
in realistic data, we maintain an asset library (via JSON files)
that describes each robot or object’s core attributes (e.g., assets
filepath, default rotation, size). The two core functions above
selectively pull from this library.
Input and Output Format.

• Input: A user prompt (e.g., “create a tabletop scene with a
random container and a snack food”). The pipeline loads
relevant asset definitions and passes them to the large
generative model calls.

• Output: A merged init_state or “initial state” dic-
tionary capturing the initial state config needed for
simulation: the chosen robot/object list, each item’s final



x,y,z coordinate, and the textual instructions, as shown
in the right half of Fig. 16.

XIII. TELEOPERATION

Ensuring flexible and intuitive remote operation is critical in
robotic teleopration system, particularly when collecting large
volumes of high quality data. In this work, we designed a suite
of input methods to facilitate robot teleopration within the
METASIM infrastructure. By supporting keyboard, DualSense
Joystick, smartphone, and VR-based controls, our system
accommodates varying user preferences and experimental needs.
This section details our design rationale, implementation steps,
and practical considerations for each control interface.

A. Keyboard

Keyboard input is an accessible method for controlling robots
in simulation. Our implementation supports multi-key combi-
nations for diagonal movement and enables full six-degree-of-
freedom manipulation of the end effector. Translational move-
ment follows the world coordinate frame (UP: +X, DOWN:
-X, LEFT: +Y, RIGHT: -Y, ‘e’: +Z, ‘d’: -Z), while rotations
in the local EE frame are controlled via ‘q’/‘w’ (roll), ‘a’/‘s’
(pitch), and ‘z’/‘x’ (yaw). The spacebar toggles the gripper.
To assist users and avoid hotkey conflicts with the simulation
viewer, we provide an operation window displaying instructions
using pygame. While efficient and hardware-independent, this
method lacks 3D spatial representation, reducing user intuition.
Additionally, Euler angle-based rotation control risks gimbal
lock, potentially leading to loss of rotational degrees of freedom
and failure in certain configurations.

B. Smartphone

Modern smartphones, equipped with advanced sensors and
wireless communication, offer an ideal low-cost solution for
intuitive teleoperation from any location. However, existing
smartphone-based 6-DoF methods, such as those relying on
accelerometers or vision-based Visual Inertial Odometry (VIO)
systems (e.g., ARKit), suffer from instability due to sensor
noise, low update rates, or weak visual features [40, 73, 74, 75].
Additionally, no open-source Android app exists for such
implementations. To overcome these limitations, we adopt
a hybrid approach: using smartphone orientation for motion
control and on-screen buttons for precise translation. Unlike the
keyboard interface, where roll, pitch, and yaw are controlled
incrementally via discrete keypresses (i.e., delta orientation
adjustments), the smartphone directly provides absolute orien-
tation data in the form of quaternions. Quaternions, due to their
compactness and immunity to gimbal lock, allow for a more
stable and accurate representation of the smartphone’s orien-
tation in the world frame. As illustrated in Fig. 18, real-time
data from the smartphone’s inclination, rotation, and magnetic
field sensors is fused to compute spatial orientation with ±5°
accuracy at a frequency of 50 Hz. This data is transmitted
via WebSocket, ensuring low-latency communication. The app
interface features six buttons for translation control in the local
coordinate system and two switches for toggling orientation

Method Simple Language-conditioned Grasping
PickCube MoveSliderLeft Object Set 1 Object Set 2 Object Set 3

OpenVLA 40.0 45.0 46.0 33.3 14.4
Octo 50.0 30.0 42.0 14.4 2.2

TABLE VIII: Vision-Language-Action (VLA) Model Re-
sults on ROBOVERSE Imitation Learning Benchmark.
Constrained with time and resources, we report VLA models’
results on two simple tasks from ROBOVERSE and grasping
tasks with diverse and challenging language instructions. We
split 58 objects in GraspNet into three sets, each containing
progressively more challenging objects based on their geometry.

updates and gripper control. Multi-touch input is supported
to enable users to send combined control signals, such as
simultaneous movement along multiple axes, improving control
flexibility and efficiency. As shown in the Fig. 19 and Fig. 17,
tilting the smartphone controls the gripper’s orientation, while
combining multi-touch signals from on-screen buttons enables
precise and complex manipulation in 3D space. However,
to mitigate magnetic interference, users should maintain a
minimum distance of 10 cm from strong magnetic sources such
as laptops and other electronic devices. This design optimizes
resource utilization, providing a high-precision 6-DoF remote
operation experience at minimal cost, rivaling professional-
grade teleoperation systems.

C. Others

Beyond keyboard and smartphone controls, our system
incorporates support for DualSense Joysticks and VR con-
trollers. The DualSense joystick provides ergonomic advantages
and high-fidelity analog inputs for nuanced velocity control,
mapping triggers and joysticks seamlessly to robot motion.
The VR interface enhances spatial awareness and precision by
enabling natural gestures and directional cues for control.

Future work could extend VR capabilities by integrating
haptic feedback to improve user immersion and task accuracy.
Additionally, the modular design of our system facilitates the in-
tegration of emerging input devices with minimal development
effort.

XIV. REAL2SIM TOOLSET FOR ASSET AND TASK
GENERATION

A. Overview

The Real2Sim toolset, specifically Video2URDF, provides
a systematic pipeline to reconstruct environment geometry
and robotic assets from monocular video input. By leveraging
advanced reconstruction techniques, this pipeline produces
meshes and unified robot descriptions that can be used in
simulation-based experiments. In doing so, it helps bridge
the gap between real-world data and simulated environments,
enabling more accurate and comprehensive benchmarking [68]

B. Components

1) Gaussian Splatting Reconstruction: The first step in the
pipeline involves Gaussian splatting [53], which converts
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Fig. 16: Illustration of the two-phase generation protocol. A user prompt guides the LLM to propose an overall task and item
list. The system then refines object positions and merges them into a final initial state.

monocular video frames into a set of Gaussian kernels for
rendering [130]. This representation captures key scene features
such as depth, color, and collision boundaries in a compact
and efficient way. As a result, it provides a visually faithful
preview of the scene and serves as an intermediate step before
detailed mesh reconstruction.

2) Mesh Reconstruction: Once the high-level scene struc-
ture is represented by Gaussian splatting, we perform mesh
reconstruction to obtain a more precise geometric model utilize
tsdf extraction [133, 128, 129, 45]. This step recovers the
meshes of:

• The environment, including rigid, immovable structures
(e.g., a table).

• The manipulatable object, which is central to the task at
hand.

• The robotic arm and end effector, assumed to have a
deterministic configuration during real-to-sim and sim-to-
real transitions.

We use a visual-language model (VLM) and available
CAD design information to generate a unified URDF (or
MJCF) description for these components. This division of
the workspace follows the notion of worldconfig in
curobo [107], ensuring that each element of the scene
(robot, object, environment) is cleanly separated and can be
easily adapted or replaced as needed.

3) Loading the URDF into the Simulation Environment:
After the URDF (or MJCF) files are generated, the final step

is to import them into a simulator, such as Mujoco [111] in
Roboverse. This allows researchers to configure tasks that
accurately reflect real-world scenarios, forming a benchmark
for training and evaluating robotic manipulation algorithms.
The resulting simulated environment benefits from high-fidelity
geometry and a consistent representation of the physical
workspace.

4) Real-to-Sim boost Sim-to-Real Performance: We
train model on our real2sim module compared with
DexGraspNet[134], demonstrating 80% success rate compared
to the 50% baseline from DexGraspNet. We use our real2sim
assets in physics-based simulations that closely replicate real-
world grasping conditions, enabling robust grasp execution.
See Fig. 20 for visualization.

C. Limitations and Challenges.

While the Real2Sim pipeline effectively reconstructs most
of the relevant geometry, it struggles with completely unseen
meshes and complex material properties [139]. Furthermore,
parameters such as friction and mass are inherently difficult
to estimate purely from visual data, introducing uncertainties
that may affect simulation fidelity. Despite these challenges,
Real2Sim offers a powerful approach to rapidly generating
simulation-ready assets for benchmarking in robotic manipula-
tion tasks.



Fig. 17: Sequential demonstration of smartphone-based control for stack cube and close box tasks.

Fig. 18: Visualization of the smartphone’s local coordinate
system, world-frame orientation, and app functionality: six
buttons control translation, and two switches toggle orientation
control and gripper state.

XV. DOMAIN RANDOMIZATION

A. Scene Randomization

For scene randomization, we curate 3D simulatable scene
assets from existing 3D scene datasets [30, 36, 21, 49].
Specifically, we convert all assets to the USD format for
integration. Additionally, we employ the articulated scene
generation method PhyScene [127] to create realistic scenes
with articulated objects and mix the generated room-level
scenes with house-level 3D scenes like ProcTHOR for greater
diversity. We replay demonstrations in these scenes by selecting
surfaces (e.g., floors, tables) that provide sufficient workspace,
guided by heuristic-based spatial constraints, following [36].

B. Visual Material Randomization

It’s optinal to attach random visual material to object surfaces.
Visual materials are randomly selected from a curated subset

Fig. 19: The smartphone app enables 6-DoF control using
orientation sensing and multi-touch buttons for translation com-
mands, while the simulated robot’s movements are visualized
in real-time on the workstation.

of ARNOLD [36] and vMaterials [84], providing more the
300 high-quality visual material candidates. Additionally, user
can also randomize the reflection properties of a given visual
material, by setting roughness, specular, and metallic to random
number between 0 and 1.

C. Light Randomization

Two lighting configurations are supported: distant light and
cylinder light arrays. For distant lighting, the polar angle
of the light source is randomized. For cylinder lighting, a
randomly generated n×m matrix of cylinder lights, each with
a randomized size, is added at a fixed height above the agents.
In both configurations, the intensity and color temperature of
the lights are randomized within physically plausible ranges.

D. Camera Randomization

A total of 59 candidate camera poses are carefully selected,
with the majority oriented to face the robot directly and a



Fig. 20: Visualization of our real2sim pipeline for robotic grasping.

smaller subset positioned at side-facing angles.

XVI. NAVIGATION AND LOCOMOTOIN TASKS

A. Navigation Tasks

To integrate vision-and-language navigation into IsaacSim,
we first correct the error-containing instructions by refining
incorrect punctuation and grammar using ChatGPT. Next, we
validate the ground truth trajectory by sweeping the robot’s
3D model (based on the ground truth trajectory) through the
scene. The trajectory is deemed invalid if collisions occur
between the robot and the scene. Additionally, we adopt the
same evaluation metrics as VLN-CE [58]. For controlling the
robot, we provide two different types of mobile embodiments,
including a Unitree Go2 robot dog and a JetBot wheeled robot,
making our task suitable for a variety of policies (with different
navigation capabilities).

B. Humanoid Tasks

We migrated the data samples from the Humanoid-X
dataset [77], and re-implemented the inference pipeline of UH-
1 [77] in our framework. We use the Unitree-H1-2 humanoid
robot as the simulated embodiment and set up the locomotion
and humanoid pose control task in our framework. The
humanoid pose control task is to control the humanoid robot
to follow some human poses while maintaining its stability on
the ground. The demonstrated poses in our framework include
arms crossing, boxing, dancing, left and right punch, playing
violin, playing guitar, praying, waving to a friend, etc. Our
pretrained policy can successfully follow the demonstrated
pose to control a humanoid robot while maintaining stable
locomotion in IssacGym, and also obtain a decent performance
in IssacLab. The humanoid environment and task configurations
are highly flexible and scalable, and we are able to support
more humanoid pose control tasks from Humanoid-X without
modifying the infrastructure.

C. HumanoidBench

HumanoidBench[102] is a high-dimensional simulated
benchmark designed to accelerate research in humanoid robot
learning, focusing on whole-body locomotion and manipulation
tasks. The benchmark features a humanoid robot equipped with
dexterous hands, enabling a wide range of complex interactions
in human-like environments.

Tasks and Assets: We migrate three fundamental locomotion
tasks: run, walk, and stand. These tasks are designed to test the
robot’s ability to maintain balance, achieve forward motion, and

stabilize in a standing position. The primary robot model used is
the Unitree H1, augmented with two dexterous Shadow Hands,
though the environment supports other humanoid models such
as Unitree G1 and Agility Robotics Digit.

Demonstrations: While HumanoidBench does not provide
pre-collected demonstrations, it supports the use of reinforce-
ment learning algorithms to generate task-specific policies.
The benchmark is designed to facilitate learning from scratch,
with dense and sparse reward structures to guide the learning
process.

Success Checkers: Each task in HumanoidBench is equipped
with a success checker that evaluates task completion based on
predefined criteria. For example, in the walk task, success is
determined by the robot’s ability to maintain a forward velocity
of 1 m/s without falling, while in the stand task, success is
measured by the robot’s ability to maintain a stable upright
posture for a specified duration.

Experiment and Results: We trained the walk, stand, and run
tasks in both the RoboVerse MuJoCo and IsaacLab simulators
using the PPO and TD-MPC2[41, 42] algorithms, and compared
the results with the HumanoidBench baseline based on the
original MuJoCo environment. As shown in Figure22 and
Figure23, the training curves from the RoboVerse MuJoCo sim-
ulator eventually converged and approached the performance
of HumanoidBench, validating the feasibility of the RoboVerse
reinforcement learning infrastructure. Additionally, we trained
the same tasks in the RoboVerse IsaacLab simulator with
identical configurations. While training efficiency in IsaacLab
was comparatively lower under non-parallelized settings (to
maintain configuration consistency), it still demonstrated a clear
upward trend in reward accumulation. This confirms the rapid
migration capability of the MetaSim framework and highlights
its potential to enable sim-to-sim learning while leveraging the
strengths of different simulators, such as IsaacLab’s support
for GPU-accelerated large-scale parallel training.

XVII. ROBOVERSE BENCHMARK SET UP DETAILS

A. Generalization Levels

To systematically evaluate the generalization capability
of a robot policy, we establish a benchmark based on a
carefully curated asset set designed for domain randomization.
This asset set encompasses a diverse range of environmental
factors, including materials, textures, lighting conditions, scene
configurations, and camera perspectives. By leveraging this
set, we assess how well different policies generalize to unseen



Fig. 21: Navigation gallery. We deploy the Unitree Go2 robot within Matterport 3D environments, primarily integrated with
ROBOVERSE Isaac Lab branch. The robot is tasked with navigating the environment based on provided instructions.
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Fig. 22: Learning curves of RL algorithms on HumanoidBench task migratation: We also run PPO in the IsaacLab
simulator in RoboVerse, but it is not visible in the plot since it only achieves very low returns.

conditions. Specifically, we split the available assets into a
9:1 ratio for training and testing, ensuring that the testing
environment contains novel variations not encountered during
training. Below, we detail the key components of this domain
randomization setup:

• Table, Ground, and Wall. In tasks where a predefined
scene is absent, we incorporate walls (and ceilings) to
introduce structural complexity. Additionally, customiz-
able tables are included for tasks requiring tabletop
interactions. The visual materials applied to these elements
are randomly sampled from a carefully curated subset of
ARNOLD [36] and vMaterials [84], ensuring a diverse
range of appearances. The table features approximately
300 distinct material options, while both the wall and
ground have around 150 material choices each. This
variation enhances the robustness of the learned policy
by exposing the model to a wide spectrum of surface
appearances and textures.

• Lighting Conditions. We introduce two distinct lighting
scenarios: distant lighting and cylinder light arrays, each
designed to test the adaptability of the learned policy to

different illumination conditions.
– Distant Light: The polar angle of the light source is

randomized within a predefined range, influencing the
way shadows and reflections appear in the scene.

– Cylinder Light Arrays: A randomized n×m matrix of
cylinder lights, varying in size and intensity, is placed
at a fixed height above the agent.

In both configurations, light intensity and color tempera-
ture are randomly varied within reasonable limits to ensure
that the model encounters a broad range of lighting effects.

• Camera Poses. To further evaluate the robustness of visual
perception, we carefully select 59 candidate camera poses,
strategically positioned to provide diverse viewpoints. The
majority of these cameras are oriented directly towards
the robot, ensuring consistent frontal perspectives, while
a subset is placed at side-facing angles to introduce
additional viewpoint variability.

• Reflection Properties. To simulate the wide range of
reflective surfaces encountered in real-world environments,
we randomize key material reflection properties, including
roughness, specular intensity, and metallic characteristics.
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Fig. 23: Demonstration of TD-MPC2 policys trained in the RoboVerse MuJoCo simulator on the Walk and Stand tasks migrated
from the HumanoidBench benchmark

These properties are adjusted within reasonable physical
ranges to ensure that the robot policy learns to handle
various levels of surface reflectivity.

By integrating these domain randomization techniques into
our benchmark, we create a controlled yet diverse testing
environment that challenges the generalization ability of
different robot policies. This setup ensures that trained policies
are not merely overfitting to a limited set of conditions but are
instead capable of adapting to a broader range of real-world
variations.

B. RoboVerse Benchmark Protocol

We rigorously design a training and evaluation protocol to
ensure a structured and reliable assessment of the policy’s
performance. Given the training data, the policy learns to
imitate the demonstrated behavior. For evaluation, we provide
a standardized API that enables systematic assessment. As
mentioned earlier, the training and evaluation follow a 9:1
ratio, ensuring that the policy is tested on novel scenarios not
encountered during training.

XVIII. POLICY TRAINING DETAILS

A. Implementation Details

For specialist models, we train from scratch with action
in 9-dim robot joint state space. Diffusion Policy [13] is
implemented based on its original framework. We search several
key hyperparameters, including observation and prediction
length, to optimize performance for our tasks. ACT [138]
is implemented with the original architecture and hyper-
parameters, except that the batch size has been increased to
512, with learning rate correspondingly enlarged to 1e− 4 to
accelerate convergence. We train ACT on one A100 GPU for
2000 epochs and evaluate with the best checkpoints on the
validation set.

For generalist models, the action is pre-processed into delta
end-effector position space from absolute end-effector position
space, and the gripper action is binarized to {0,+1}. Owing
to the lack of time and resources, we are only able to fine-tune
the generalist models in the single-task setting. For each task,
OpenVLA [56] is LoRA [44] fine-tuned (rank= 32) with 8
A100 GPU under official settings to convergence and reaches
over 95% action token accuracy as proposed by Kim et al.
[56] during the training stage. During evaluations, we employ
Curobo [106] as the inverse-kinematics solver to transform the
action to robot joint state space.

B. Diffusion Policy
We implemented the training and validation code for Diffu-

sion Policy based on the requirements of our tasks and relevant
research papers.

Modeling Diffusion Policy as Denoising Diffusion Proba-
bilistic Models (DDPMs), we train a noise predictor network:

ϵ̂k = ϵθ
(
ak, s, k

)
(1)

that takes in noisy actions ak, current observations s, and
denoising iterations k and predicts the noise ϵ̂k.

As for observation s, We use ResNet18 to extract the features
of scene images fimg and use 3-layer MLP to extract the
features of robot joint states frobot. fimg concatenating with
frobot is just the conditioning input for Diffusion Policy.

During training, we randomly choose a denoising step k
and sample noise ϵk added to the unmodified sample a0. Our
training loss is the difference between ϵk and predicted noise:

LDP = MSELoss(ϵk, ϵ̂k) (2)

During inference time, our policy starts from random actions
aK and denoises for K steps to obtain the final action
predictions. At each step, the action is updated following:

ak−1 = α
(
ak − γϵθ

(
ak, s, k

)
+N

(
0, σ2I

))
(3)



, where α, β and γ are hyperparameters.

XIX. WORLD MODEL DETAILS

A. Methodology

We adopt a video generation framework based on
Latte[71]—a transformer-driven latent diffusion model
equipped with an efficient spatial-temporal attention mech-
anism. For action conditioning, we use frame-level Adaptive
Layer Normalization[89] (AdaLN), following insights from
IRASim[141] that show more precise control of the gripper with
frame-level conditioning compared to video-level conditioning.

In the forward pass, raw video frames are encoded using a
frozen autoencoder from Stable Diffusion[90]. The first frame
serves as the initial condition, while noise is introduced into
the latent representation of subsequent frames during training.
Both the noise schedule and action conditions (gripper states
with either Cartesian position plus orientation or joint position)
are encoded by separate MLPs into latent space and then added
together.

These noisy latent frames are then fed into a transformer
composed of alternating spatial and temporal attention blocks,
where action conditions are applied at each frame via AdaLN.
For inference, we employ DDIM[105] as a denoising scheduler,
using 200 sampling steps.

B. Data Preparation

The DROID[54] dataset’s episodes typically last from 120
to 360 frames. To amplify motion, we skip every 6 frames,
effectively reducing the frame rate to 4 fps with sequence
lengths from 20 to 60. In the RoboVerse simulation, we adjust
the control frequency so that most episodes span 20 to 60
frames, mirroring the number of frames of DROID in one
episode. We filter out any sequence shorter than 20 or longer
than 60 frames, resulting in about 50,000 unique episodes from
DROID.

We only generate 50,000 unique RoboVerse episodes due
to time and resource constraints. The full-scale RoboVerse is
planned to train more capable world models in future works.

We exclude the gripper camera view because the model
struggles with drastic camera pose changes, which leads to
poor frame generation quality. Since we consider left and right
camera views as separate samples, each dataset effectively
doubles to 100,000 samples.

C. Experiments

Our experiments involve training three datasets, DROID-50K,
RoboVerse-50K, and DROID-RoboVerse-100K, on 8 NVIDIA
H100 GPUs. We use a spatial resolution of 240×320 and
sequences of 16 frames per episode. Starting with a model of
100M parameters and a batch size of 16, training converges at
around 100K steps on RoboVerse and 200K steps on DROID.

We first compare Cartesian position plus orientation to joint
positions as action conditions and find that using joint positions
as action conditions yields more precise gripper movement
control in frame generation, as shown in Fig.25. We believe it

is due to joint positions being less ambiguous than Cartesian
position plus orientation as the robot states representation.

However, generation quality remains suboptimal when train-
ing on the DROID-50K or DROID-RoboVerse-100K datasets
and validating on DROID samples due to the complexity of
DROID scenes. Scaling the model to 500M parameters and
reducing the batch size to 8 leads to better preservation of
object geometry, as does the prediction of robot arm movement.

As discussed in the main paper, although the larger model
trained on DROID-RoboVerse-100K shows an improved under-
standing of object shapes in DROID samples compared to the
model trained on DROID-50K, it still struggles with intricate
real-world physics. In contrast, training with RoboVerse-50K
or DROID-RoboVerse-100K and validating on RoboVerse
scenes produces more physically and geometrically consistent
predictions.

We believe it is because RoboVerse offers cleaner back-
grounds, more comprehensive views of the robotic arm, and
the implementation of domain randomization and augmenta-
tion. By comparison, many DROID frames contain cluttered
backgrounds or incomplete arm visibility, creating challenges
for learning robust temporal dynamics from raw pixels.



Fig. 24: Visualization of Sim-to-Sim-to-Real Experiments.
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Fig. 25: Visualization of ground truth and predicted frames
by models conditioned on cartesian position (plus orientation)
and joint position.
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